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Set-up

o Let (Q, A, A = (A¢)e>0,P) be a filtered probability space, where:

e A is the complete, right-continuous filtration generated by a 2-dimensional
Brownian motion (B, B1),

e P is the historical probability measure.

o Define W = (Wy)>0 by

We = pBe + /1 p?Bj-.

Then W is a an (A, P)-Brownian motion correlated with B with the correlation
coefficient p € (—1,1).

e Let F¥ = (F);>0 denote the complete, right-continuous filtration generated by
a process X.

e The filtration A coincides with the filtration F" \ FZ | generated by the
2-dimensional correlated Brownian motion (W, B).
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Model

Let:

e S, the stock price, be a strictly positive F"-adapted diffusion satisfying
dSt = St(/.L(St)dt + O'(St)th), So = S0,
e V. the value of the firm, be an IFB-adapted diffusion starting at V) = vo which

satisfies 7Y = FE,

e 7, the default of the firm, be a strictly positive, finite FZ-stopping time.

We assume that the law of 7 is equivalent to the Lebesgue measure, i.e.,
P(7 € du) ~ du. Consequently, there exists a strictly positive density function g such
that

P(r > u) = / g(s)ds Vu>0.
Moreover, we suppose that

Gy =P(r > t|R") > 0.
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Default-free Market

We consider a financial market with:

e the stock S = (S¢)¢>0, where

dSt = St(,u(St)dt + U(St)th), So = S0,

e the bank account B = (B;)¢>¢ satisfying

dBt = ’f’tBtdt, Bo =1.

We assume that:

o the risk-free v, =0,

e 0= (0,);>0, where 6, = “52) satisfies the Novikov's condition.

a(S)?
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Default-Sensitive Contingent Claim

Definition
A default-sensitive contingent claim is a random variable of the form
U™ = Yrlesr + Y7 (7)<,

where Y7 and YZ(u) are F}¥ -measurable random variables.

Example

Default-sensitive European call option:

U =Tor (St — K)© + L<rh(r) (St — K)©

Definition

A fair price at time ¢ € [0, T of the contingent claim U” is the conditional
expectation of U” with respect to K; under one of the pricing measures Q, i.e.,

Cy = Eo(U7|Ky).
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Additional Information

The filtration K represents:
e either the regular investor’s information
Ki=F"Vvo(rat) Vt>0,
e or the strong information
Ke=FYVvo(r) Vi>0,
e or the full information

Ki=FYVFPvo(r) vt>o.
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Jacod's Hypothesis

Hypothesis (Jacod’s Hypothesis)

The F" -(regular) conditional law of 7 is equivalent to the law of T, i.e.,

P(r € dulF}") ~P(r € du) P—as. Vt>0.

Lemma

There exists a family of strictly positive (" | IP)- martingales (p(u))u>0, called the
F" -conditional density of T, such that

P(r > ulFY) :/ pe(s)g(s)ds, P —a.s. Vt>D0.

u

Fact

For every u > 0, there exists a process 3(u) such that

dpi(u) = pe(u)Be(w)dWe,  po(u) = 1.
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FW v FB-(regular) conditional law of 7

Theorem
The FY v FB-(regular) conditional law of T is given by

L~ P(r > ulFP), u>t,

P(T>u\.7-—tw\/]-"tB):{H> wet
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Yor's Method

e Let us denote

Pi(u) = P(r > u|FY v FP) = P(r > u|FP).

e The process P(u) = (P:(u)) is an (FZ,P)-martingale. Hence,

Pi(u) = Po(u) —|—/O Qs(u)dBs.

e There exists a family of measures P(dz) = (P;(dz))¢>0 such that

Pi(u) = /:o Pi(dx).
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Example

Take S and V' which satisfy the following:

dS; = SiopdWy, So = so,

d‘/t = ‘/to—dBty VO = %o,
where

d(W, B): = pdt
and
T=1inf{t > 0: V; <a}.
Define P(u) by
Pi(u) = P(r > u|FY v FP) = P(r > u|FP).

Then,
Lest [° L xp{fm}ds u>t
Pi(u) = t)’hﬁ 2 ’ ’
Lrsa, u <t
and fort < 7
2 XZ(u) Vi
=1 u\ T —— - — —o®(—X - —t ;
Qu(u) = L e Py} T o X — o )
where
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Yor's Method

Hypothesis (Yor's Hypothesis)

There exists an TV v TP -predictable family of measures Q(dx) = (Q¢(dx))¢>0 such
that

Q= [ " Quldn)

and the measure Q:(dx) is absolutely continuous with respect to P:(dx).
Moreover, the process ((x) defined by

Qi(dz) = (i(z) Py (d)

satisfies .
/ [¢s(T)|ds < o0 P—as. Vt>0.
0

Example

The processes P(u), Q(u) and ¢(7) = ((¢(7))t>0, Where

Q:(du)

Gu(r) =T p o

1 7BTth)’

u:‘r:]IT (
| >t BT—Bt—%U(T—t) T—1

satisfy the Yor’s Hypothesis.
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Semi-martingale Decomposition of W/

e Decomposition of W in K:
Filtration K = (K¢):>0 Decomposition of W
FVVo(rAt) Wy =W+ [1°7 Zeds + [}, Bo(r)ds
FVvo(r) Wy = WE + fot Bs(7)ds
FVNVFEVo(r) Wi =W+ p ) C(r)ds
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Semi-martingale Decomposition of .S

e Semi-martingale decomposition of S in K:

dSt = St (Afdt + O'(St)deK>

Filtration K = (K¢)¢>0 Decomposition of A = (A:)¢>0
.7:,5VV \/O’(T/\t) At: M(St)‘l‘U(St)(]Itgr% +Ht>7—ﬁt(7))
F¥Vo(r) A= p(St) + o (Se)Be(7)

FYNVFEva(r) Ar= p(St) + pa(Se)Gi(T)
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Predictable Representation Theorem

e Any strictly positive (K, P)-(local) martingale N has the following decomposition:

Filtration K = (K¢):>0 Decomposition of N = (N;)i>0
FVVo(rat) dN; = N, (atdeK + btht)
FYvo(r) dN(T) = Ni(1)as(1)dWE

FW NV FEV o(r) dN:(r) = No(7) (at(r)deK + b (r)dW,{K»L)
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Equivalent Martingale Measures

Filtration K = (K¢)¢>o0 Radon-Nikodym density Z = (Z;)¢>0

FVVao(rat) Zy =€ (— [ (0« + ) dWE) exp{— [;"" baAeds 4+ In(1 4 b, )5, }

FY Vvo(r) Z(T) = Zo(T)E (— Jo0s + 65(7))(11/Vf)t

FYVFEVa(r) Zu(7) = Zo(r)E (= J; (0. + pCa (7)) AWE) £ (Jy bu(DdWE),
Proposition

The process Z is a (K,P)-martingale and the probability measure Q defined by

dQ|x, = Z:dP|x, Yt>0
belongs to the set

{Q:Q¥P, Sisa(K,Q)— (local) martingale}.
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Price in FW v o (7)

Let Ky = FV V o(r). The Radon-Nikodym density Z = (Z;):>¢ is given by

Zi(1) = Zo(T)E (f /'(95 + BS(T))dW3<>t .

0

Proposition

The price of the default-sensitive contingent claim
U = Yilesr + Y2 (7)<,

where Y4 and YZ(u) are F¥ -measurable random variables, is uniquely given by

Long | FW Ep (Y2 FVV uer
Ce(7) :HT>TEP<YTmf‘}_t >+HT§T ol T(u)mT)i\ £ lu=

where m = (my)>o satisfies

my =& (—/ GSdVVS) vt > 0.
0 t
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Price in FY VFB v o(7)

Let K; = F}¥ V o(r). The Radon-Nikodym density Z = (Z):>0 is given by

Zi(r) = Zo(T)E (f /O (es + pgS(T))dwf)t £ (/0 bS(T)dwf’L) .

t

Proposition
The price of the default-sensitive contingent claim
U7 = Yilst + Y2(7T)L<r,

where Y3 and Y7 (u) are F¥ -measurable random variables, is uniquely given by

u u=1 > (Y2 (u u 1 2y | e
(c ( ): HT EP(YTLT(L)f‘:-f)VFt | +]I ]EI (YT( )LTL(/t()L-;:f, V]:t)‘

where L(7) = (Li(r))iso satisfies Li(7) = £ (7 I (as + pCa (T))dWsK)t 0, () [uer

and T, (u)du = P(1 € du|FP).
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Choice of the Pricing Measure in the case K; = F/V vV o(r A t)

We choose the process b in
. tAT
Zy =& (—/ (65 +’ys)dW;K> exp{—/ bsAsds + In(1 + b )> -},
0 t 0

which satisfies the following conditions:

o bis F" -predictable,
o E(b7) < oo,

e by > —1forallt >0,
o Ep(Z;) = 1.
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f-divergence, where f(x) = —In(z)

We choose

Q" e {Q: Q¥ P, Sisa (K,Q)— (local) martingale},

dQ* . B dQ
(0 () = ltio® (0 (ler))

where IC: = FV v a(T At).

such that

We solve
Ep(=1In(Z1)) = jnf Ee(=In(Z7)),

where

. TAT
Zr =& (-/ (05 + %)dW;K> exp{—/ bsAsds +1In(1 + b, )Ir>r}.
0 T 0
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Minimal Martingale Measure in K = (K)>0, where

Ki=FVvo(rnt)

Proposition
The optimization problem /s solved by by =0 for all t > 0, i.e.,

Z;" =¢£ (_/ (95 + = ]Isg-r + /6.9(7-)]13>7‘)dW;K)
0 Gs T

More precisely, we have
= Toer + Bs (T)ES>T)dW§<) dP|xc
T

Q

S

dQ*|x, = & (7/0 (65 +
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Price in K = (K)i>0, where KKy = FV Vo(r At)

Proposition

The price of the default-sensitive contingent claim
U™ = Yrlesr + Y2 (7)<,

where Y} and Y7 (u) are FY -measurable random variables, is given by

SE YA (W) 25 (wypr (w)g(w)dut Y] Z5.Gr | F)

Ep
(Ct = Ht<7 ( Gth

Ep (Y2 (u) 25 (w)pr (W) FP) lu=r

Hiezr P (75 (7)

where _ R
Zt* - Zt*]:[tgq— + Z:Ht>7—.
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Conclusions

e In the presented method, one of the two hypotheses (Jacod’s or Yor’s) has to
be satisfied.

o If one of the hypotheses is satisfied, then the stock price remains a
semi-martingale in the enlarged filtration and the well-known results for the
decomposition of a Brownian motion in the enlarged filtration may be applied.

e In the case of the strong information (initial enlargement of FV), the set of
equivalent martingale measures is infinite but it does not imply incompleteness of
the market because the o-algebra Ky is not trivial. Moreover, the prices are
unique.

e In the case of the full information (initial enlargement of F Vv F?), the set is
again infinite and the prices are unique.

e In the case of the regular investor (progressive enlargement of FV), the set of
equivalent martingale measures is also infinite and the prices depend on the
choice of a measure. One may use f-divergence approach to choose one of them.
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Thank you for your attention.
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